The Use of Mechanical Insufflation-Exsufflation in Invasively Ventilated Critically Ill Adults

Ema L Swingwood, Willemke Stilma, Lyvonne N Tume, Fiona Cramp, Sarah Voss, Jeremy Bewley, George Ntoumenopoulos, Marcus J Schultz, Wilma Scholte Op Reimer, Frederique Paulus, and Louise Rose

Introduction Methods **Study Design Study Identification Study Selection and Data Extraction** Methodological Quality Assessment **Data Analysis** Results **Population Clinical Indications and Contraindications Clinical Studies Outcomes and Measures Adverse Events** Barriers and Facilitators to MI-E Use Discussion Strength and Limitations Summary

Mechanical insufflation-exsufflation (MI-E) is traditionally used in the neuromuscular population. There is growing interest of MI-E use in invasively ventilated critically ill adults. We aimed to map current evidence on MI-E use in invasively ventilated critically ill adults. Two authors independently searched electronic databases MEDLINE, Embase, and CINAHL via the Ovid platform; PROSPERO; Cochrane Library; ISI Web of Science; and International Clinical Trials Registry Platform between January 1990-April 2021. Inclusion criteria were (1) adult critically ill invasively ventilated subjects, (2) use of MI-E, (3) study design with original data, and (4) published from 1990 onward. Data were extracted by 2 authors independently using a bespoke extraction form. We used Mixed Methods Appraisal Tool to appraise risk of bias. Theoretical Domains Framework was used to interpret qualitative data. Of 3,090 citations identified, 28 citations were taken forward for data extraction. Main indications for MI-E use during invasive ventilation were presence of secretions and mucus plugging (13/28, 46%). Perceived contraindications related to use of high levels of positive pressure (18/28, 68%). Protocolized MI-E settings with a pressure of ± 40 cm H_2O were most commonly used, with detail on timing, flow, and frequency of prescription infrequently reported. Various outcomes were re-intubation rate, wet sputum weight, and pulmonary mechanics. Only 3 studies reported the occurrence of adverse events. From qualitative data, the main barrier to MI-E use in this subject group was lack of knowledge and skills. We concluded that there is little consistency in how MI-E is used and reported, and therefore, recommendations about best practices are not possible.

Key words: mechanical insufflation-exsufflation; CoughAssist; ICU; extubation; airway clearance; physiotherapy; weaning. [Respir Care 2022;67(8):1043–1057. © 2022 Daedalus Enterprises]

Introduction

Cough is an essential defense mechanism in clearing mucus from the airways. In invasively ventilated patients, cough is impaired due to an artificial airway as the vocal cords and glottis remain abducted. Sedation further exacerbates sputum retention as it limits the cough reflex, mucociliary clearance, and muscle strength. As a result, sputum retention in patients with an advanced airway is a common problem that may have substantial impact on ability to wean and to be extubated in the longer term.

Airway clearance techniques are used by clinicians to mobilize and clear retained secretions. Endotracheal suctioning is most commonly used to remove secretions from the endotracheal tube (ETT), tracheostomy, and the upper airway.⁴ However, limitations to this technique include the inability to clear secretions from the lower airways and potential trauma to the upper airways.²

Mechanical insufflation-exsufflation (MI-E) is traditionally used in the neuromuscular population.⁵⁻⁷ It is conventionally used as a noninvasive device that delivers a positive-pressure breath to optimize tidal volume (V_T) and lung recruitment and then quickly alternates to a negative-pressure breath. It is this rapid alternation between positive and negative-pressure breaths that augments gas flows, improves sputum mobilization, and ultimately stimulates a

Ms Swingwood is affiliated with Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom; and Adult Therapy Services, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom. Ms Stilma and Dr Paulus are affiliated with Faculty of Health, Urban Vitality, Centre of Expertise, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands; and Department of Intensive Care Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands. Dr Tume is affiliated with School of Health and Society, University of Salford, Manchester, United Kingdom; and Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom. Drs Cramp and Voss are affiliated with Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom. Dr Bewley is affiliated with Department of Intensive Care, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom. Dr Ntoumenopoulos is affiliated with School of Physiotherapy, Australian Catholic University, Sydney, Australia. Dr Schultz is affiliated with Department of Intensive Care Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; and Nuffield Department of Medicine, University of Oxford, Oxford,

cough.⁶ More recently, there has been growing interest of MI-E use for intubated critically ill adults.⁷ Our research group has completed a number of practice surveys in Canada, ^{8,9} the Netherlands, ¹⁰ and the United Kingdom.¹¹ These surveys illustrate the variable adoption of MI-E both nationally and internationally. Barriers to use cited in these surveys include limited clinician experience and knowledge of MI-E. Additionally, results illustrated MI-E use predominantly in the non-intubated critically ill subject group.^{8,9,11} The most frequently cited indication for MI-E use was the optimization of sputum clearance to prevent intubation or re-intubation.⁸⁻¹¹ A Cochrane systematic review concluded that further research is required to establish the feasibility, efficacy, and safety of MI-E in the intubated population given the dearth of efficacy studies.¹²

The aim of this scoping review was to map current and emerging evidence on how MI-E is used in invasively ventilated critically ill adults. We sought specific detail regarding the subject groups and stage of invasive ventilation for which MI-E as well as the practical application including pressures, times, and flows. We also sought to describe the outcomes and measures reported in MI-E studies as well as adverse events. This information will be used to inform research design in future MI-E studies.

United Kingdom. Dr Scholte op Reimer is affiliated with Department of Cardiolo-gy, Amsterdam University Medical Centers, AMC, location AMC, Amsterdam, the Netherlands. Dr Rose is affiliated with Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, United Kingdom; and Department of Critical Care and Lane Fox Respiratory Unit, Guy's and St Thomas' Foundation NHS Hospital Trust, London, United Kingdom.

Supplementary material related to this paper is available at http://www.rcjournal.com.

The authors have disclosed no conflicts of interest.

Ms Swingwood holds a clinical doctoral research fellowship as funded by the National Institute of Health Research. Ms Stilma holds a personal (PhD fellowship) grant from NWO Netherlands Organization for Scientific Research.

Mss Swingwood and Stilma are joint primary authors.

Correspondence: Ema Swingwood MSc, Adult Therapy Services A804, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, United Kingdom. E-mail: ema.swingwood@uwe.ac.uk.

DOI: 10.4187/respcare.09704

Methods

Study Design

This scoping review followed the methods outlined by Arksey and O'Malley and advanced by other authors. 13-15 The scoping review protocol has been previously published. 16 There were no amendments made to the protocol during the conduct of the scoping review.

Study Identification

Our search strategy was a modified version of that previously used for the Cochrane systematic review of cough augmentation techniques in the critically ill.¹² Modification required removal of terms used for airway clearance strategies other than MI-E. Furthermore, we did not exclude studies based on study design and did not restrict article selection based on language.¹⁶

The search criteria were applied between January 1990–April 2021 using electronic databases MEDLINE, Embase, and CINAHL via the Ovid platform. PROSPERO and Cochrane Library were searched for relevant reviews, ISI Web of Science for conference abstracts, and the International Clinical Trials Registry Platform (trialsearch. who.int *Accessed April 12, 2022*) for unpublished and ongoing trials. The reference lists of relevant studies and reviews were examined to highlight any additional articles for inclusion.

Study Selection and Data Extraction

Criteria for inclusion of articles were (1) adult population with invasive ventilation via ETT or cuffed tracheostomy in an intensive care setting, (2) use of MI-E, (3) any study design with original data, and (4) published from 1990 onward. Citations were excluded if they included participants < 18 y or if they were editorial pieces, letters to the editor, and bench or animal-based studies.

Screening and data extraction were performed by 2 review authors (ES and WS) independently using a piloted data extraction form. Reviewers were responsible for contacting key authors for clarification of methods or additional data if required. Any disagreements during the review process were recorded and resolved by discussion or referred to a third reviewer (LR) for arbitration. EndNote X9 (Clarivate, Philadelphia, Pennsylvania) was used to manage citations.

Methodological Quality Assessment

The Mixed Methods Appraisal Tool¹⁷ was used to provide an assessment of study quality of full-text papers. Quality scores were not used to exclude studies.

Citations of full publications only were scored by assigning quality scores 0–100% (0%, no criteria met; 100%, all criteria met) with 20% assigned per methodological criteria of which there were 5 per study design. Score ratings > 80% were classified as high quality, 80% moderate quality, and < 80% low quality. This process was completed independently by the reviewers (ES and WS) and then compared and discussed to generate consensus on ratings.

Data Analysis

Descriptive statistics were used to summarize quantitative data. The Theoretical Domains Framework^{18,19} was used to interpret qualitative data relating to barriers and facilitators of MI-E use in invasively ventilated critically ill adults.

Results

The initial search generated 3,090 unique citations. The full-text papers of 133 citations were assessed for eligibility. Once inclusion and exclusion criteria were applied, 34 citations representing 28 studies were taken forward for data extraction. One conference abstract was additionally highlighted through direct contact with an author. The search results are presented using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses study flow diagram (Fig. 1).

Most studies (no. = 9) were randomized controlled trials (5 full-text publications, $^{20\text{-}24}$ 3 trial registrations, $^{25\text{-}27}$ and one abstract 28) or descriptive studies (no. = 19) including observational cohort studies (no. = 7), $^{29\text{-}35}$ surveys (no. = 6), $^{8,10,11,36\text{-}38}$ and case study/series reports (no. = 5) $^{39\text{-}43}$ and crossover trials (no. = 2). 25,44 Studies were completed in 13 different countries. The Mixed Methods Appraisal Tool was completed for the 19 full-text publications. Only 5/19 (26%) studies scored 100% (high quality) 8,10,11,23,29 (Table 1 and appendix 1, see related supplementary materials at http://www.rcjournal.com).

Population

Of the 28 studies, 20 studies provided information on the ICU population in which MI-E was studied (trial registrations no. = 3 and survey data no. = 5 excluded). Studies varied in terms of subject population with dissimilar reasons for intubation/invasive ventilation. The primary reason for intubation was recorded in 17/20 (85%) and was most commonly acute respiratory failure (no. = 12). Multiple underlying causes of acute respiratory failure were stated across studies including postoperative respiratory failure, pneumonia, cardiac arrest, acute spinal cord injury, and neuromuscular disease (NMD). Duration of invasive ventilation ranged

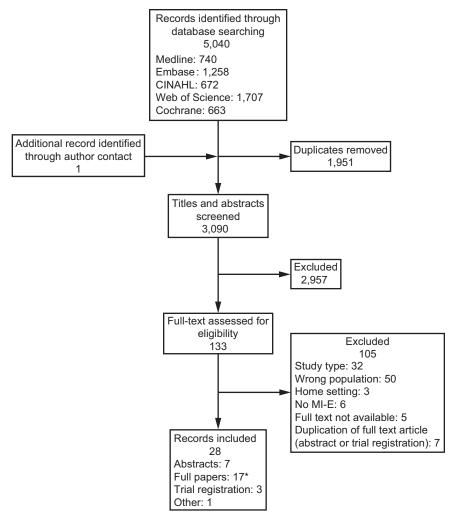


Fig. 1. Flow chart. *Full paper identified of 2 abstracts after closing date search. MI-E = mechanical insufflation-exsufflation.

from a minimum of 24 h to 10 d at the time of recruitment (Table 1).

Clinical Indications and Contraindications

We identified 10 different indications for use of MI-E. In clinical studies, the most commonly reported indication was presence of secretions and mucus plugging (9/28, 32%) followed by prophylactic airway clearance (7/28, 25%). Contraindications relating to concerns about using high levels of positive pressure (9/28, 32%) were most common. These findings were mirrored in survey reports of health care professionals (Table 2).

Clinical Studies

All 20 clinical studies reported on one or more elements of MI-E device settings. A range of devices were used; 11 (55%) reported using the E70 device and 2 (10%) the

Emerson CoughAssist device. Eleven clinical studies did not specify device used. Twelve (60%) studies reported use via an ETT, 4 (20%) via tracheostomy, and 6 (40%) via a combination of ETT and tracheostomy.

A pressure setting combination of \pm 40 cm H_2O was most commonly used across reporting studies (10/20, 50%). $^{21-24,26,28-30,39,44}$ Time settings were reported in 11/20 (55%) studies. $^{21-24,29,30,34,39-41,44}$ Most commonly used time settings were inspiratory time 3 s, expiratory time 2 s, and 1 s pause. A pause duration was reported in 8/20 (40%) studies. $^{20-24,30,34,44}$ Five studies (25%) reported use of one insufflation prior to an exsufflation breath (not reported in the remaining studies). Flow profile was specified in only 3 (15%) studies and was set at medium (no. = 2) 20,28 or high (no. = 1). Use of oscillation was reported in 5/20 (25%) studies with 3 /5 20,28,33 applying this option. One study applied an oscillation amplitude of 10 and frequency of 20 Hz, whereas only oscillation frequency was reported in the remaining 2 studies as high³³ or 16 Hz. Treatment

Table 1. Study Characteristics

MMAT (%)	80	08	80		80	20		80	(Continued)
Outcomes	Ventilator modes and parameters, arterial blood gas, hemodynamic parameters, adverse events, secretion clearance, device tolerance	СРF	VAP incidence, invasive ventilation duration, LOS ICU, mortality, number of VAP/invasive ventilation duration, bronchoscopy frequency, bronchoscopy/invasive ventilation duration, antibiotic use, antibiotic/invasive ventilation duration, bronchial obstructions	Secretion drainage procedures 24 h and secretion volume, VAP incidence, extubation failure, hospital and ICU LOS, ICTI and bosorial mortality	S _{pos} , peak inspiratory pressure, \overline{P}_{aw} , work of breathing, wet sputum weight and volume, patient preference for comfort and effectiveness	Atelectasis resolution	Extubation success, interventions used, respiratory muscle strength, bulbar function, cough strength, ICU LOS, hospital LOS, survival, discharge location	CPF	Secretion clearance, F ₁₀₂ , arterial blood gas
Interface	ETT and TT	TT	ETT and TT	ETT	Ħ	ETT	ETT	ETT and TT	ЕТТ
Primary ICU Diagnoses/ Reason for Invasive Ventilation	Peritonitis, severe pancreatitis, nosocomial pneumonia, RF, coma, severe community acquired pneumonia, bronchospasm, cardiac	Acute RF	RF-medical, postoperative, trauma	Acute RF	Respiratory tract infections	RF-atelectasis	Emergency intubation due to respiratory failure	Postoperative prolonged weaning and prolonged weaning nost cervical SCI	Aspiration pneumonia
Population Description	Invasive ventilation subjects	NMD hospitalized with routine MI-E > 1 v	Invasive ventilation subjects	Invasive ventilation < 7 d and expected for >	ALS	Postoperative	ALS	Acute SCI	Previously fit and well
N	13	10	30		9	П	S	2	_
Country	Spain	Japan	India	France	Spain	Belgium	USA	Malaysia	United Kingdom
Citation Format	Full paper	Full paper	Full paper	Trial registration	Full paper	ort Full paper	Abstract	Full paper	Abstract
Author, Year	Sánchez García, 2018³¹	Kikuchi, 2019 ³⁰	Kuroiwa, 2021 ³⁴	Crossover Study ISRCT- N25106564, 2013 ²⁵	Sancho, 2003 ⁴⁴	Case Study/Series Report Bialais, F	Khan, 2015 ⁴²	Tan, 2017 ⁴⁰	Vokes, 2019 ⁴¹

Outcomes	Extubation failure		Device use, patient satisfaction	Device use	Device use	Patient's experience/preference (preference, fatigue)	Device use	Device use	
	Extul		Devi	Devi	Devi	Patie: pre	Devid	Devi	
Interface	ETT and TT					TT			
Primary ICU Diagnoses/ Reason for Invasive Ventilation	RF			NMD, SCI		RF			
Population Description	Cervical SCI		SCI	Respiratory therapists	ICU clinicians	Traumatic SCI	ICU professional with expertise in airway care	ICU physiotherapists	
N	23		98	114	157	18	78	166	
Country	Italy		USA	Canada	Canada	USA	Netherlands	United Kingdom	
Citation Format	Abstract		Full paper	Full paper	Full paper	Full paper	Full paper	Full paper	rial registration. ppraisal tool on on oneumonia ase iton-exsufflation sclerosis
Author, Year	Guarnieri, 2020^{43}	Surveys	Schmitt, 2007^{36}	Prevost, 2015^{37}	Rose, 2016 ⁸	Garstang, 2000^{38}	Stilma, 2019 ¹⁰	Swingwood, 2019 ¹¹	eyn = 30. *Sample size mentioned in trial registration. MMAT = mixed methods appraisal tool RF = respiratory failure ETT = endotracheal tube LOS = length of stay NIV = noninvasive ventilation \overline{P}_{ww} = mean airway pressure V_T = tidal volume RR = risk ratio Cks = lung compliance RRs = six artio Cks = lung compliance VAP = ventilator-acquired pneumonia TT = tracheostomy tube NMD = neuromuscular disease CPF = cough peak flow MLE = mechanical insufflation-exsufflation ALS = amyotrophic lateral sclerosis SCI = spinal cord injury

Table 1. Continued

Table 2. Reported Indications and Contraindications Mechanical Insufflation-Exsufflation

Outcomes	Clinical Studies no. (%)	Survey Studies in Health Care Professionals no. (%)
Indications		
Secretions and mucus plugging	9 (32)	4 (13)
Prophylactic airway clearance	6 (21)	
Reduced cough peak flow or insufficient cough	4 (14)	2 (7)
Neuromuscular disease or spinal cord injury		13 (4)
Previous domiciliary use		7 (2)
Weaning failure	4 (14)	2 (7)
Atelectasis	3 (11)	2 (7)
Respiratory failure	2 (7)	2 (7)
ICU acquired weakness	-	1 (3)
Need for endotracheal suctioning	3 (11)	
Contraindications		
Contraindications to increased positive pressure [†]	9 (32)	9 (30)
Recent surgery (pulmonary/thoracic/abdominal/neuro)	3 (11)	4 (13)
$F_{IO_2} > 0.60$ or PEEP > 10 mm Hg or $P_{peak} > 40$ mm Hg	2 (7)	1 (3)
(Severe) bronchospasm, COPD, or asthma	1 (7)	
Hemodynamic instability	1 (7)	1 (3)
Active tuberculosis	1 (7)	
Increased intracranial pressures (> 25 mm Hg)		2 (7)
Severe COPD or asthma		2 (7)
Impaired consciousness (inability to respond to direct simple commands)		1 (3)
Trauma (facial, cranial, rib fractures)		1 (3)
Other [‡]	6 (21)	1 (3)

no. = 28

regimens varied across studies, with MI-E cycles being repeated up to every 20 min, ²⁹ hourly, ³² 1–2 times per day, ³⁴ 3 times a day, ²² 4 times a day, ⁴³ and most commonly up to once per day. ^{20,21,23,24,30,31,33,39,44} Five studies (25%) reported the inclusion of other treatment adjuncts alongside MI-E including side positioning, ⁴³ manual assisted cough, ³⁴ and suction. ^{24,41,44} Table 3 provides an overview of described settings of MI-E use in invasively ventilated critically ill participants.

Seven (25%) studies described the individual applying MI-E. This was most commonly physiotherapists or respiratory therapists, ^{22,23,30,34,41} followed by ICU nurses, ^{22,29} caregivers/family, ^{29,32} and ICU physicians. ²²

Outcomes and Measures

Of the 28 studies, 23 were appropriate to extract outcomes and measures; the remaining 5 were survey-based studies reporting on organization of care.

We identified 21 different outcomes measured in included studies (Table 4). Only 7 studies (7/23, 30%)

clearly specified a primary outcome; these included aspirated/wet sputum weight, ^{23,24} re-intubation rate, ²² suction frequency, ²⁵ number of ventilator/ICU days, ²⁶ incidence of ventilator-associated pneumonia (VAP), ³⁴ and mortality rate in 1 year. ²⁷

Five (5/23, 22%) studies reported on one outcome only. These included cough peak flow (no. = 3), 30,35,40 re-intubation rate (no. = 1), $\overset{43}{}$ and at lectasis resolution (no. = 1). $\overset{39}{}$ Pulmonary mechanics was the most frequently reported outcome overall (no. = 9). $^{21,23,24,29,31-33,42,44}$ These measurements encompassed measures of V_T, minute ventilation, airway resistance, lung compliance, and vital capacity. Eight studies (8/23, 35%) reported on extubation failure/ success; ^{22,25-27,29,32,42,43} 7 studies (7/23, 30%) reported on secretion clearance or wet sputum weight.^{21,23-25,31,33,44} Methods of outcome measurement varied across studies. Secretion clearance was primarily measured by aspirated sputum or sputum weight, most commonly at 5 min poststudy intervention.^{23,44} When needed, 10 mL NaCl was used to rinse the suction catheter, and that weight was extracted from the result.²³ Alternatively, secretion clearance was measured by frequency of endotracheal suctioning over a 24-h period.²⁵ VAP incidence was measured

^{*}Multiple indications/contraindications per study.

[†]These included pneumothorax, hemothorax, hemoptysis, emphysema, subcutaneous emphysema, pulmonary bullae, barotrauma

[‡]Other: palliative care, hemofiltration via jugular catheter, pregnancy, strict dorsal position, contractures, nausea and vomiting.

P_{peak} = peak pressure

Table 3. Detailed Overview of Mechanical Insufflation-Exsufflation Settings Across Studies

Author, Year	Mode	Insufflation Pressure (cm H_2O)	Exsufflation Pressure (cm H ₂ O)	Insufflation Time	Exsufflation Time	Pause	Flow Profile	Insufflation Repeat	Treatment Regimen
Randomized Controlled Trials Goncalves,	Trials		40	ю	2	3		-	8 cycles* per session, 3 sessions per d; 1 d
2012 ²² Coutinho,	Auto-timed	04 6	40	8	8	0		1	while intubated, 2 d postextubation 5 repetitions of 4 cycles
Ferreira de Camillis,		40	40	7	8	7			3 repetitions of 10 cycles
Campos,		99	15	7	2	0.5	Medium		30 s on, 30 s off until 5 min
2019^{-2} Jpm, 2018^{26}		90 4	40						10 cycles
Sanchez Garcia,		50	50						
Alejos,	Automatic	40	40	Е	64	-	Medium		4 repetitions of 5 cycles, with 1 min rest between repetitions
Bach, 2010 ²⁹	Manual	40	40						Up to every 20 min to maintain or return pulse oxygen saturation to > 95% in ambient air
Soares, 2014^{35}		30–70	30–70						
Bach, 2015 ³²	Manual	02-09	02-09						Hourly while awake
Farina, 2017^{33}		50	45	ю	4				2 cycles per session
Sánchez García,	Patient	Q.	45	8	4		High	1	2 repetitions of 10–12 cycles
Kikuchi,	Automatic	00	40	1.5	1.5	2		0	2 repetitions per cycle
2019 ³⁰ Kuroiwa,		40	15–40	2–3	2–3	2			2 repetitions of 5–10 cycles
202134		15–40 (started low and gradually increased, through auscultation and changes in S _{PO₂})							
Crossover ISRCTN25106564, 2013 ²⁵									Daily intervention until day 14 or extubation 5 cycles (Continued)

6-10 cycles with 20-60 s rest between each cycle Treatment Regimen 10 repetitions of 5 cycles Insufflation Profile Pause Exsufflation Time Insufflation Time 26 building up Exsufflation increments (cm H₂O) Pressure 9 9 45 to 40 in of 40 Insufflation Pressure 25 building up to 40 in increments of *Cycle refers to an insufflation breath rapidly followed by an exsufflation breath. (cm H₂O) 40 40 9 50 Mode Manual Case Study/Series Report Author, Year Tan, 2017⁴⁰ Vokes, 2019⁴¹ 2003^{44} 2020^{43} 2010^{39} Guarnieri Sancho,

Table 4. Outcomes Measured*

Outcomes	Frequency
Physiologic Variables	
Pulmonary mechanics	9 (39)
Extubation failure/success	8 (35)
Secretion clearance/wet sputum weight	7 (30)
Cough peak flow	5 (22)
Pain/agitation score	5 (22)
Adverse event	5 (22)
Device use	3 (13)
Ventilator-acquired pneumonia incidence	3 (13)
Patient preference	3 (13)
S_{pO_2}	2 (9)
Bronchoscopy use	2 (9)
Antibiotic use	2 (9)
Frequency of bronchial obstructions	2 (9)
Hemodynamic parameters	2 (9)
Work of breathing	2 (9)
Atelectasis resolution	1 (5)
Clinical Outcome	
Mechanical ventilation duration	4 (17)
Noninvasive ventilation failure rate	3 (13)
ICU stay	7 (30)
Mortality	5 (22)
Discharge location	1 (4)
Data are shown as no. (%). *Multiple outcomes reported per study at times.	

throughout the period of intubation, with the frequency of assessment being unclear. 20,25,34 The definition of VAP provided was "pneumonia in a patient who was on invasive ventilation for > 48 h." Re-intubation rate or extubation failure was used as an outcome measure in 8 (8/23, 35%) studies and defined in 3/8 studies. Definitions of extubation failure varied across studies including 48 h following extubation, 22 not needing a tracheostomy during hospitalization or at any time during follow-up, 32 and discharge without reintubation. 29

Time points for measuring pulmonary mechanics were 5 min before and after the intervention and 1 h after the intervention. Cough peak flow was measured during and after intubation, mostly using the MI-E device. ^{30,35,40}

Adverse Events

Adverse events were addressed in 13/20 (65%) studies. For reporting purposes, we grouped adverse events into 3 commonly occurring categories, namely respiratory, hemodynamic, and other (Table 5).

Of the 13 studies, 10 studies reported no occurrence of adverse events in relation to MI-E. Three studies did report on the occurrence of adverse events.^{8,24,42} Documented

Table 3. Continued

Table 5. Reporting of Adverse Events

	Summary of Planned Adverse Events Data Collection Summary of Adverse Events	Summary of Planned Adverse Events Data Collection		Summary of Adverse Events
riist Audiof, real	Respiratory	Hemodynamic	Other	Reporting
Clinical Studies Sancho et al, 2003 ⁴⁴ Soares et al, 2014 ³⁵ Khan et al, 2015 ⁴²	Re-intubation and pneumothorax			No adverse effects No side effects in relation to high MI-E pressures Re-intubation 2/5 subjects Pneumorhorax 1/5 subjects
Farina et al, 2017 ³³ Coutinho et al, 2018 ²¹ Ferreira de Camillis et al, 2018 ²³ Sanchez-Garcia et al, 2018 ³¹ Sanchez-Garcia et al, 2019 ²⁸	Barotrauma, desaturation, atelectasis, hemoptysis Oxygen saturation by 3% Barotrauma (pneumothorax) or atelectasis, desaturation, hemoptysis, other airway complications	Hemodynamic complications HR and \overline{P}_{aw} Occurrence of systolic blood pressure $< 90 \text{ mm Hg}$	Tricumonotax 1/2 subject None detected after MI-E No significant changes None observed Tolerance (need for additional seda- No adverse events observed, tives or analgesic medication) No adverse events observed No adverse events observed	rneumonora 1/3 subjects None detected after MI-E No significant changes None observed No adverse events observed, well tolerated No adverse events observed
Vokes et al, 2019 ⁴¹ Guarnieri et al, 2020 ⁴³ Martínez-Alejos et al, 2021 ²⁴	Vokes et al, 2019^{41} Guarnieri et al, 2020^{43} Martínez-Alejos et al, Pheumothorax, S_{aO_2} consistently \downarrow < 85% 2021^{24} or > 10% from baseline	HR, systolic blood pressure or diastolic blood pressure \uparrow or $\downarrow > 20\%$ from baseline		Safe and feasible, no adverse effects No adverse events observed 10 episodes of brief desaturations or hemodynamic variations were documented during expiratory rib cage compressions + MI-E
Surveys Prevost et al, 2010^{37}				Complications (not defined) rare in neuromuscular disease subjects; in other natient grouns unknown
Rose et al, 2016 ⁸	Mucus plugging requiring tracheostomy, pneumothorax,hemoptysis	Bradycardia/asystole, hypotension, arrhythmias	Chest pain	Mucus plugging requiring tracheostomy (10/43, 23%) Pneumothorax (4/43, 9%) Hemoptysis (3/43, 7%) Bradycardia/asystole (8/43, 19%) Hypotension (7/42, 16%) Arrhythmias (6/43, 14%) Chest pain (8/43, 19%)
*Remaining articles did not explicitly report on adverse events. Adverse events (to include definitions when provided): (13/28, MI-E = mechanical insuffation-exsufflation HR = heart rate $\overline{P}_{aw} = \text{mean airway pressure}$ $S_{aO_{z}} = \text{arterial oxygen saturation}$	*Remaining articles did not explicitly report on adverse events. Adverse events (to include definitions when provided): (13/28, 46%).* MI-E = mechanical insuffation-exsufflation HR = heart rate $\overline{P}_{aw} = \text{mean airway pressure}$ $\overline{S}_{a,0} = \text{arterial oxygen saturation}$			

Table 6. Reported Barriers and Facilitators to Mechanical Insufflation-Exsufflation Use

Theoretical Domains Framework Domain	Description
Knowledge and skills	A perceived lack of skills (skills) and knowledge (knowledge) was generally seen as a barrier to use, with the suggestion that clinicians may be more skilled using the device via a tracheostomy interface in comparison to an ETT. ^{8,11}
Beliefs about consequences	Expected or potential outcomes (beliefs about consequences) were focused on positive clinical experiences. 8,11,36
Intention	A positive intent to practice (intention). ¹¹
Environmental context and resources	A lack of resources, funding, and senior culture (environmental context) impacting implementation. 8,11,36
Social influences	Team culture and senior support (social influences) influencing implementation and illustrating the potential impact colleagues. ^{8,11}

adverse events included oxygen desaturation (< 85%),²⁴ hemodynamic variation (increase or decrease of heart rate or blood pressure > 15–20% from baseline),^{8,24} re-intubation,⁴² pneumothorax,^{8,42} mucus plugging,⁸ hemoptysis,⁸ and chest pain.⁸

Barriers and Facilitators to MI-E Use

We found no qualitative studies to include in the scoping review; however, 3 survey studies reported qualitative data from open-ended questions. 8,11,36 Themes illustrating barriers and facilitators to MI-E use were grouped under 6 of the 14 Theoretical Domains Framework domains: knowledge, skills, beliefs about consequences, intention, environmental context and resources, and social influences (Table 6). Barriers to MI-E use in the critically ill included the impact of team culture, a lack of clinical experience, and the need for additional resources and training with the device. Conversely, data illustrated positive intention to use the device with this subject group, with positive experiences described to date.

Discussion

In this scoping review, we mapped current and emerging evidence on MI-E use in invasively ventilated critically ill adults. We included 25 completed studies and 3 trial registrations published between January 1990–April 2021. Findings show that MI-E is predominantly used in ICU patients who have difficulties in weaning and sputum clearance. Studies predominantly investigated MI-E use in subjects with NMD and acute spinal cord injuries that does not reflect the heterogeneous nature of invasively ventilated critically ill adults. Perceived contraindications to MI-E use in the acutely intubated population related to the use of increased positive pressure. There was variation in MI-E device setup and the amount of details reported across studies. Only 3 studies

reported on occurrence of adverse events. Qualitative data pertaining to subject and clinician experience of using MI-E in this subject group were lacking.

During invasive ventilation, positive-pressure breaths are delivered followed by a passive expiration. In contrast, MI-E delivers both positive- (insufflation) and negative- (exsufflation) pressure breaths. Therefore, it is noteworthy that we found the use of positive pressure to be a perceived contraindication, whereas negative pressure was not considered a contraindication or precaution for use of MI-E in invasively ventilated critically ill adults. In these patients, lung recruitment and de-recruitment are important considerations. 45,46 Barotrauma and volutrauma associated with large V_Ts are well documented, and low-volume lung-protective ventilation is standard of care, particularly for patients with acute lung injury. 45 However, de-recruitment of lung units can have an equally adverse impact on oxygenation and effective ventilation while attenuating lung injury. 46 To date, no studies have examined the extent of de-recruitment or possible adverse events in relation to a negative-pressure exsufflation breath using MI-E.

Our review data indicate that MI-E is mainly studied with insufflation and exsufflation pressures of 40 cm H₂O. The use of asymmetrical pressure settings and customization of pressure settings to endotracheal size have not yet been studied in invasively ventilated critically ill adults. Previous studies in an NMD non-ICU population⁴⁷ illustrate that asymmetrical (ie, pressure settings to enhance the expiratory flow +30: -40 cm H₂O) may enhance expiratory flow. One bench study examining the impact of an artificial airway on MI-E flows⁴⁸ found higher pressures were required to overcome resistance to flow, particularly in narrower ETT sizes. Detail of flows, use of oscillations, and timings were reported infrequently, which makes extrapolation of device setup into a clinical setting challenging. It is difficult to know whether these omissions are simply a lack of reporting detail or whether the full

potential of MI-E settings was not used; this has been commented and queried previously.⁴⁷ It should be acknowledged that advanced settings such as oscillations have not been avai-

lable to clinicians for the duration of the data collection period; this may, therefore, have impacted on reporting of this feature. Data are needed to optimize the physiological impact of MI-E in invasively ventilated critically ill patients and to provide evidence-based guidance for our practice of care, training, and education.

We found multiple outcomes reported across studies including re-intubation rates, wet sputum weight, and respiratory parameters. The appropriateness of wet sputum weight as a primary outcome for examining the efficacy of MI-E is questionable. 11,49 Although sputum clearance is important to quantify in invasively ventilated critically ill patients, a linear relationship does not exist between sputum quantity and disease severity. Consistency in the selection of outcome measures across MI-E studies would allow for meta-analyses, thus strengthening the overall evidence base. Development of a core outcome measure set, as recommended by the COMET Initiative (https://www.comet-initiative.org, *Accessed September 2021*), that specifically focuses on airway clearance in the invasively ventilated critically ill adult population is warranted.

Only 3 studies reporting occurrence of an adverse event including pneumothoraces, hemodynamic instability, and oxygen desaturation. Changes in hemodynamic parameters during MI-E were transient and did not require trial protocol cessation. Case reports of pneumothoraces have previously been described in an adult NMD non-ICU population^{50,51} following MI-E, although no causal relationship could be confirmed due to the use of MI-E.⁵⁰⁻⁵³

A common barrier to MI-E use was a perceived lack of skills and knowledge, suggesting an important opportunity for training and education. A European survey among ICU nurses showed that the knowledge related to respiration/ventilation was scored relatively low, although that would not be expected within this field of care. ⁵⁴ With MI-E being part of respiratory care, further qualitative inquiry to explore barriers and facilitators in greater detail could provide useful data to inform the optimal clinical implementation of research findings.

Strength and Limitations

Strengths of our scoping review are the use of systematic and transparent prespecified protocol, a search strategy with no methodological or language restrictions, appraisal of risk of bias using the Mixed Methods Appraisal Tool, and use of a theoretical framework to explore barriers and facilitators. We acknowledge that bench studies were excluded that may have provided

additional data on MI-E settings in order to inform future research protocols.

Summary

This scoping review of MI-E use in invasively ventilated critically ill adults reports data on 28 studies. We conclude that there is little consistency in how MI-E is used and reported. This limits the strength of the overall body of evidence and the ability, therefore, to make recommendations about best practices. More studies are required, including more transparent reporting of device settings for the invasively ventilated critically ill patient. Additionally, we recommend development of a core outcome measure set for airway clearance in this population to promote consistency in outcome reporting in future intervention trials important to patients, clinicians, and researchers.

REFERENCES

- 1. McCool FD. Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest 2006;129(1 Suppl):48S-53S.
- Nakagawa NK, Franchini ML, Driusso P, de Oliveira LR, Saldiva PH, Lorenzi-Filho G. Mucociliary clearance is impaired in acutely ill patients. Chest 2005;128(4):2772-2777.
- Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med 2010;363(23):2233-2247.
- Sole ML, Bennett M, Ashworth S. Clinical indicators for endotracheal suctioning in adult patients receiving mechanical ventilation. Am J Crit Care 2015;24(4):318-324.
- Auger C, Hernando V, Galmiche H. Use of mechanical insufflationexsufflation devices for airway clearance in subjects with neuromuscular disease. Respir Care 2017;62(2):236-245.
- Chatwin M, Toussaint M, Goncalves MR, Sheers N, Mellies U, Gonzales-Bermejo J, et al. Airway clearance techniques in neuromuscular disorders: a state of the art review. Respir Med 2018;136:98-110.
- 7. Toussaint M. The use of mechanical insufflation-exsufflation via artificial airways (editorial). Respir Care 2011;56(8):1217-1219.
- Rose L, Adhikari NK, Poon J, Leasa D, McKim DA. Cough augmentation techniques in the critically ill: a Canadian national survey. Respir Care 2016;61(10):1360-1368.
- Rose L, McKim D, Leasa D, Nonoyama M, Tandon A, Kaminska M, et al. Monitoring cough effectiveness and use of airway clearance strategies: a Canadian and UK survey. Respir Care 2018;63 (12):1506-1513.
- Stilma W, van der Hoeven SM, Scholte Op Reimer WJM, Schultz MJ, Rose L, Paulus F. Airway care interventions for invasively ventilated critically ill adults—a Dutch national survey. JCM 2021;10(15):3381.
- Swingwood E, Tume L, Cramp F. A survey examining the use of mechanical insufflation-exsufflation on adult intensive care units across the UK. J Intensive Care Soc 2019.
- Rose L, Adhikari NK, Leasa D, Fergusson DA, McKim D. Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation. Cochrane Database Syst Rev 2017;1: Cd011833.
- Arksey H, O'Malley L. Scoping studies: toward a methodological framework. Int J Soc Res Methodol 2005;8(1):19-32.
- Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci 2010;5(69).

- Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169(7):467-473.
- Swingwood E, Stilma W, Tume L, Cramp F, Paulus F, Schultz M, et al. The use of mechanical insufflation-exsufflation in invasively ventilated critically ill adults: a scoping review protocol. Syst Rev 2020;9(1):287.
- Pace R, Pluye P, Bartlett G, Macaulay AC, Salsberg J, Jagosh J, et al. Testing the reliability and efficiency of the pilot mixed methods appraisal tool (MMAT) for systematic mixed studies review. Int J Nurs Stud 2012;49(1):47-53.
- Atkins L, Francis J, Islam R, O'Connor D, Patey A, Ivers N, et al. A guide to using the theoretical domains framework of behavior change to investigate implementation problems. Implement Sci 2017;12(1):77.
- Cane J, O'Connor D, Michie S. Validation of the theoretical domains framework for use in behavior change and implementation research. Implement Sci 2012;7:37.
- Campos JFR, Godoy MDP, Cordeiro de Souza L, Coutinho WM, Forgiarini Junior LA. Insuflador-exsuflador mecânico versus manobra PEEP-ZEEP em pacientes em ventilação mecânica prolongada. Fisioter Bras 2019;20(4):462-467.
- Coutinho WM, Vieira PJC, Kutchak FM, Dias AS, Rieder MM, Forgiarini LA, Jr. Comparison of mechanical insufflation-exsufflation and endotracheal suctioning in mechanically ventilated patients: effects on respiratory mechanics, hemodynamics, and volume of secretions. Indian J Crit Care Med 2018;22(7):485-490.
- Goncalves MR, Honrado T, Winck JC, Paiva JA. Effects of mechanical insufflation-exsufflation in preventing respiratory failure after extubation: a randomized controlled trial. Crit Care 2012;16(2):R48.
- Ferreira de Camillis ML, Savi A, Goulart Rosa R, Figueiredo M, Wickert R, Borges LGA, et al. Effects of mechanical insufflationexsufflation on airway mucus clearance among mechanically ventilated ICU subjects. Respir Care 2018;63(12):1471-1477.
- Martínez-Alejos R, Martí J-D, Li Bassi G, Gonzalez-Anton D, Pilar-Diaz X, Reginault T, et al. Effects of mechanical insufflation-exsufflation on sputum volume in mechanically ventilated critically ill subjects. Respir Care 2021;66(9):1371-1379.
- In-exsufflation mechanics in intubated patients. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01816206/full Accessed, May 2021.
- Effect of mechanical sputum assistance for ventilated patients in intensive care unit. Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01911097/full. Accessed, May 2021.
- Effectness of Treatment With Mechanical Insufflation-Exsufflation. Available at: https://clinicaltrials.gov/show/NCT04149873 2019.
- 28. Sanchez Garcia M, Alvarez M, Domingo S, Pino D, Martinez A, Gonzalez FP, et al. Safety and tolerability of mechanical insufflation-exsufflation (MIE) and hypertonic saline with hyaluronic acid (HS-HA) for respiratory secretion suctioning (RSS) in intubated patients (abstract). Intensive Care Med 2019;7.
- Bach JR, Goncalves MR, Hamdani I, Winck JC. Extubation of patients with neuromuscular weakness: a new management paradigm. Chest 2010;137(5):1033-1039.
- Kikuchi K, Satake M, Terui Y, Kimoto Y, Iwasawa S, Furukawa Y. Cough peak flow with different mechanically assisted coughing approaches under different conditions in patients with neuromuscular disorders. Phys Ther Res 2019;22(2):58-65.
- 31. Sanchez-Garcia M, Santos P, Rodriguez-Trigo G, Martinez-Sagasti F, Farina-Gonzalez T, Del Pino-Ramirez A, et al. Preliminary experience on the safety and tolerability of mechanical "insufflation-exsufflation" in subjects with artificial airway. Intensive Care Med Exp 2018;6(1):8.
- Bach JR, Sinquee DM, Saporito LR, Botticello AL. Efficacy of mechanical insufflation-exsufflation in extubating unweanable

- subjects with restrictive pulmonary disorders. Respir Care 2015;60(4):477-483.
- 33. Farina T, Del Pino A, Santos P, Rodriguez G, Martinez F., Sanchez GM. Pilot study on the safety of mechanical 'Insufflation-Exsufflation' in patients with artificial airway (abstract). Intensive Care Med 2017;5:2 (Supplement 1).
- 34. Kuroiwa R, Tateishi Y, Oshima T, Inagaki T, Furukawa S, Takemura R, et al. Mechanical insufflation-exsufflation for the prevention of ventilator-associated pneumonia in intensive care units: a retrospective cohort study. Indian J Crit Care Med 2021;25(1):62-66.
- Soares ML, Goncalves M, Gazola N, Bach JR. Mechanical insufflation-exsufflation in neuromuscular disease: What is the best combination of pressures? (abstract). Eur Respir J 2014;44:Suppl 58).
- Schmitt JK, Stiens S, Trincher R, Lam M, Sarkarati M, Linder S, et al. Survey of use of the insufflator-exsufflator in patients with spinal cord injury. J Spinal Cord Med 2007;30(2):127-130.
- Prevost S, Brooks D, Bwititi PT. Mechanical insufflation-exsufflation: practice patterns among respiratory therapists in Ontario. Can J Respir Ther 2015;51(2):33-38.
- Garstang SV, Kirshblum SC, Wood KE. Patient preference for inexsufflation for secretion management with spinal cord injury. J Spinal Cord Med 2000;23(2):80-85.
- Bialais É, Coppens T, Roeseler J. Atelectasis of the right lung: interest of CoughAssist? About a case. Kinesitherapie Revue; 2010(104-105):19-22.
- Tan JH, Fauzi AA, Hasnan N. Pulmonary rehabilitation using mechanical insufflation-exsufflation therapy for spinal cord injury two case studies in the University Malaya Medical Center. JUMMEC 2017;20 (2):31-33.
- 41. Vokes R, Van Willigen Z. A case study describing the use of mechanical insufflation: exsufflation (MI: E) in an intubated and ventilated patient with high-oxygen and positive end-expiratory pressure (PEEP) (abstract). J Intensive Care Soc 2020;21(2):47 Suppl).
- Khan AM, Kantrow S, Guiterrez A. Extubation after acute respiratory failure in amyotrophic lateral sclerosis (abstract). Am J Respir Crit Care Med 2015;191.
- 43. Guarnieri M, Fossi F, Pozzi F, Curto F, Chieregato A. A safe strategy for early weaning and tracheostomy avoidance in cervical spinal cord injury: a single-center experience (abstract). Intensive Care Med 2020;8:Suppl 2.
- 44. Sancho J, Servera E, Vergara P, Marín J. Mechanical insufflation-exsufflation vs tracheal suctioning via tracheostomy tubes for patients with amyotrophic lateral sclerosis: a pilot study. Am J Phys Med Rehabil 2003;82(10):750-753.
- 45. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342 (18):1301-1308.
- Park HY, Ha SY, Lee SH, Kim S, Chang KS, Jeon K, et al. Repeated de-recruitments accentuate lung injury during mechanical ventilation. Crit Care Med 2013;41(12):e423-430.
- Chatwin M, Simonds AK. Long-term mechanical insufflation-exsufflation cough assistance in neuromuscular disease: patterns of use and lessons for application. Respir Care 2020;65(2):135-143.
- 48. Guerin C, Bourdin G, Leray V, Delannoy B, Bayle F, Germain M, et al. Performance of the CoughAssist insufflation-exsufflation device in the presence of an endotracheal tube or tracheostomy tube: a bench study. Respir Care 2011;56(8):1108-1114.
- Berney S, Denehy L. A comparison of the effects of manual and ventilator hyperinflation on static lung compliance and sputum production in intubated and ventilated intensive care patients. Physiother Res Int 2002;7(2):100-108.

- Allen JE, O'Leary EL. Considerations for chest clearance and cough augmentation in severe bulbar dysfunction: a case study. Can J Respir Ther 2018;54(3):66-70.
- Suri P, Burns SP, Bach JR. Pneumothorax associated with mechanical insufflation-exsufflation and related factors. Am J Phys Med Rehabil 2008;87(11):951-955.
- McDonald LA, Berlowitz DJ, Howard ME, Rautela L, Chao C, Sheers N. Pneumothorax in neuromuscular disease associated with
- lung volume recruitment and mechanical insufflation-exsufflation. Respirol Case Rep 2019;7(6):e00447.
- Yasokawa N, Tanaka H, Kurose K, Abe M, Oga T. Mechanical insufflation-exsufflation-related bilateral pneumothorax. Respir Med Case Rep 2020;29:101017.
- Fulbrook P, Albarran JW, Baktoft B, Sidebottom B. A survey of European intensive care nurses' knowledge levels. Int J Nurs Stud 2012;49(2):191-200.